(1/a)的共轭虚数=1/(a的共轭虚数)?问:命题是否正确.求说理或证明.若不对请举反例.

问题描述:

(1/a)的共轭虚数=1/(a的共轭虚数)?问:命题是否正确.求说理或证明.若不对请举反例.

命题是对的
设虚数a=x+yi,则其共轭虚数a‘ =x-yi
故1/a=1/(x+yi)=(x-yi)/(x^2 + y^2),则其共轭虚数为(x+yi)/(x^2 + y^2),
而1/(a的共轭虚数)=1/a’ =1/(x-yi),
显然x^2 + y^2=(x-yi)×(x+yi)
故(x+yi)/(x^2 + y^2)=1/(x-yi)
即(1/a)的共轭虚数=1/(a的共轭虚数),问题得证

成立.证:设a=x+yi 则a的共轭虚数=x-yi1/a = (x-yi)/(x²+y²) 则(1/a)的共轭虚数=(x+yi)/(x²+y²)1/(a的共轭虚数) =1/x-yi =(x+yi)/(x²+y²) 所以(1/a)的共轭虚数=1/(a的...