已知等比数列{an}的前n项和为Sn,a4=2a3,S2=6.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:bn=an+log2an,求数列{bn}的前n项和Tn.
问题描述:
已知等比数列{an}的前n项和为Sn,a4=2a3,S2=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+log2an,求数列{bn}的前n项和Tn.
答
(Ⅰ)设等比数列{an}的公比为q,
由
,得
a4=2a3
S2=6
…(2分)
a1q3=2a1q2
a1+a1q=6
解得
…(4分)
q=2
a1=2
所以an=a1qn-1=2n.…(6分)
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,…(8分)
所以Tn=(21+1)+(22+2)+…+(2n+n)
=(21+22+…+2n)+(1+2+…+n)…(9分)
=
+2(1-2n) 1-2
n(n+1) 2
=2n+1+
-2.…(12分)n(n+1) 2
答案解析:(Ⅰ)利用等比数列{an}的通项公式和前n项和公式由已知条件求出首项和公比,由此能求出数列{an}的通项公式.
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,由此利用分组求和法能求出数列{bn}的前n项和Tn.
考试点:数列的求和.
知识点:本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查函数与方程思想,注意分组求和法的合理运用.