Nastia Luikin can reduce her rotational inertia by a factor of about 3.3when changing from a straight position to a tuck position.If it takes her 0.4 s to makeone full rotation (or revolution) in a straight position,what is her angular speed when in atuck position?Provide your answer in rev/s as well as in rad/s.我不是要翻译。
Nastia Luikin can reduce her rotational inertia by a factor of about 3.3
when changing from a straight position to a tuck position.If it takes her 0.4 s to make
one full rotation (or revolution) in a straight position,what is her angular speed when in a
tuck position?Provide your answer in rev/s as well as in rad/s.
我不是要翻译。
这题考查 角动量守恒 (Conservation of Angular Momentum)
使用公式 L = I w L is angular momentum, I rotational inertia, w is angular speed
L1=L2 ---> I1 w1 = I2 w2
从题目的条件可知 I2= 1/(3.3) I1, w1= 2.5 rev/s = 5 pi radian/s
带入 上面等式 I1*2.5 rev/s = 1/3.3 I1 *w2 --> 两边同时除以I1, 可求 w2= 8.25 rev/s =16.5PI rad/s
你确定你的题目没有抄错,,nastia luikin可以减少她的转动惯量由约3.3的一个因素发生变化时,直的位置对塔克的位置。如果她需要0.4秒,使一个完整的旋转(革命)在直行位置,她是什么样的角速度在塔克的位置?证明你在转/ S以及弧度/秒
当Nastia Luikin从手臂伸展的姿势变为手臂抱团的姿势时,她能把她自己的转动惯量减少3.3倍.
如果她在手臂伸展的姿态旋转一周用时0.4s,那么她手臂抱团时,她的角速度是多少.(分别用:转/秒,和弧度/秒两种单位表示)
设:Nastia Luikin手臂抱团的转动惯量为:J
初始角速度:ω0=2π/0.4=5π rad/s,初始转速:n0=1/0.4=2.5 rev/s
则由角动量守恒:3.3Jω0=Jω,解得:ω=16.5π rad/s
n=ω/2π=16.5π/2π=8.25 rev/s
姿态变化时,人是有做功的,所以角动能不守恒,而合力矩为零,所以角动量守恒.
nastia luikin从伸展位变到抱团位(注:可能是体操、芭蕾或跳水,抱团后转动贯量变小,转速变快)可以将她的转动惯量减少到原来的1/3.3,如果她在伸展状态转一整圈(或一转)花0.4秒时间,她在抱团位的角速度是多少?答案要同时用转/ 秒和弧度/秒两个单位给出。
转动动能E=1/2 * J * ω *ω, J就是转动贯量,ω是角速度(rad/s)
根据能量守恒原理,姿式变化后动能不变,则
1/2 * J0 *ω0 *ω0 =1/2 *J1* ω1 *ω1
1/2 * J0 *2π/0.4 *2π/0.4=1/2 *J0/3.3 *ω1 *ω1
则角速度ω1=sqrt(3.3)*2π/0.4 rad/s= sqrt(3.3)/0.4 rev/s