一道中学数学数列题11-22设{an}是正数组成的数列,其前n项和为sn,且对所有自然数n,an与2的等差中项等于sn与2的等比中项()则 (A )an=4n-2 请详解.

问题描述:

一道中学数学数列题11-22
设{an}是正数组成的数列,其前n项和为sn,且对所有自然数n,an与2的等差中项等于sn与2的等比中项()则 (A )an=4n-2 请详解.

可以先算an前几项,再归纳通式

(an+2)/2=√(2Sn),
两边平方得:(an+2)²=8Sn,
n=1时,(a1+2)²=8a1, a1=2.
(an+2)²=8Sn, (a(n-1)+2)²=8S (n-1). (n≥2)
两式相减得:a²n+4 an- a²(n-1)-4 a(n-1)=8 an,
a²n- a²(n-1)- 4 an-4 a(n-1)=0
(an+ a(n-1))( an- a(n-1))-4(an+ a(n-1))=0,
an- a(n-1)=4,
所以数列{an}是首项为2,公差为4的等差数列.
an=2+4(n-1)=4n-2.