我们曾经研究过n*n的正方形网格,得到了网格中正方形的总数的表达方式为1的平方+2的平方+3的平方+.n的平方等于多少,当n为100时,正方形网格中的总格数是多少?

问题描述:

我们曾经研究过n*n的正方形网格,得到了网格中正方形的总数的表达方式为1的平方+2的平方
+3的平方+.n的平方等于多少,当n为100时,正方形网格中的总格数是多少?

同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n-l)×n
=
13n(n+l)(n-l)时,我们可以这样做:
(1)观察并猜想:
12+22=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(l+2)×3+
(1+3)×4(1+3)×4
=1+0×1+2+1×2+3+2×3+
4+3×44+3×4
=(1+2+3+4)+(
0×1+1×2+2×3+3×40×1+1×2+2×3+3×4


(2)归纳结论:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(
1+2+3+…+n1+2+3+…+n
)+[
0×1+1×2+2×3+…+(n-1)n0×1+1×2+2×3+…+(n-1)n
]
=
12n(n+1)12n(n+1)
+
13n(n+1)(n-1)13n(n+1)(n-1)
=
16×
n(n+1)(2n+1)n(n+1)(2n+1)
(3 )实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是
338350338350
.考点:整式的混合运算.分析:根据(1)所得的结论,即可写出(1)(2)的结论;
(3)直接代入(2)的结论,计算即可.(1)观察并猜想:(1+3)×4;4+3×4;0×1+1×2+2×3+3×4;
(2)归纳结论:1+2+3+…+n;0×1+1×2+2×3+…+(n-1)n;12n(n+1);
13n(n+1)(n-1);n(n+1)(2n+1);
(3)实践应用:338350.

1)观察并猜想:
12+22=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(l+2)×3+
(1+3)×4
(1+3)×4
=1+0×1+2+1×2+3+2×3+
4+3×4
4+3×4
=(1+2+3+4)+(
0×1+1×2+2×3+3×4
0×1+1×2+2×3+3×4


(2)归纳结论:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(
1+2+3+…+n
1+2+3+…+n
)+[
0×1+1×2+2×3+…+(n-1)n
0×1+1×2+2×3+…+(n-1)n
]=
12n(n+1)
12n(n+1)
+
13n(n+1)(n-1)
13n(n+1)(n-1)
=
1
6
×
n(n+1)(2n+1)
n(n+1)(2n+1)
(3 )实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是
338350
338350.

n*(n+1)*(2n+1)/6
n=100 338350