数学家的小故事

问题描述:

数学家的小故事

陈景润小时候的故事
陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。
有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?
过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。
陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。
陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。
“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。
管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。
时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。
陈景润把书收拾好,就往外走去。图书馆里静悄悄的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。
要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!
他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。
“陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。”
党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。
他打开灯,马上做起那道题目起来。

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。

高斯
德国大数学家高斯( Carl Friedrich Gauss 1777-1855 ) 是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果。
贫寒家庭出身
高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受过什麼教育。
母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。
高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。
他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。
父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!算错了,钱应该是这样.....。」父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地
方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。
另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式:
1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?
在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。
原来 1 +100= 101
2 + 99 = 101
3 + 98 = 101
.
.
.
50 + 51 = 101
前后两项两两相加,就成了50对和都是 101的配对了
即 101 × 50 = 5050。
按:今用公式
表示 1 + 2 + ... + n
高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。
高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什麼帮助。
他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。
高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般情形,这里 n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。
有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈,她发现他完全明白所读的书的深奥内容。
公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。
费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也赏识他的才能,於是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更有用些,那高斯又怎麼会成材呢?
高斯的学校生涯
在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当於高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。
他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。
795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。许多外国学生也到那里学习语言、神学、法律或医学。这是一个学术风气很浓厚的城市。
高斯这时候不知道要读什麼系,语言系呢还是数学系?如果以实用观点来看,学数学以后找生活是不大容易的。
可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。这发现在数学史上是很重要的。
我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,内角也一样的 n 边多边形。
希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。但是在这之后的二千多年以来没有人知道怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多边形。
还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和圆规画出当且仅当 n 是底下两种形式之一:
k= 0,1,2, ...
十七世纪时法国数学家费马 ( Fermat ) 以为公式
在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4是质数,F5不是)。
高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。
1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为”代数基本定理”。
事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。
二十岁时高斯在他的日记上写,他有许多数学想法出现在脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研究的成果写成一本叫<算学研究>,并且在二十四岁时出版,这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,这书可以说是数论第一本有系统的著作,高斯第一次介绍”同余”这个概念。

数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".意大利科学家阿涅泽(Maria Gaetana Agnesi,1718~1799)在自然科学与哲学的著作对整个学术世界开启了一扇窗.而她最著名的数学作品,《分析讲义》,被公认是第一部完整的微积分教科书之一。
阿涅泽生于1718年,从小便被认为是个天才.在她家里的聚会中,她总是谈及有关逻辑、机械、化学、植物学、动物学、矿物学以及解析几何等这些广泛的话题。她在九岁的时候,便为了倡导女性有权受高等教育,举行了一场冗长且具有说服力的演说。虽然她是以拉丁文演说,但却以当地的方言回答台下的观众。11岁时,她已精通了拉丁语、法文、希腊文、德文、希伯来文和西班牙文,当然也包括她的母语意大利文。
阿涅泽生性谦虚内向。从1738年后,她不愿再参与家中的聚会,转而加入修道会,将其一生奉献给穷苦贫困的人民。阿涅泽的父亲说服她继续进行她的研究,从此之后,她过着与世隔绝的生活,将自己完全地投入在数学的研究里头。
后来的十四年里,阿涅泽专注在数学的领域里,并写了些令人赞赏的作品。她的《分析讲义》是本超过千页的精典之作,书中包含了从代数到微积分和微分方程的原始发现。由于她的著作,阿涅泽的名字常常与钟型曲线(又称"阿涅泽巫婆",方程为)摆在一起。由于它的数学性质和其在物理方面的应用,此曲线引起了数学家研究的兴趣。
阿涅泽的书被法国的科学院称作是"在其领域中,写的最好最完整的著作",教皇贝内帝克十四世(Pope Benedict XIV)颁给她一面金牌,以表彰她在数学上的卓越贡献。1750年,阿涅泽被任命为波洛尼亚大学的数学与自然哲学系的系主任。然而她仅接受他们所授与的荣誉头衔。
1751年,阿涅泽正值数学事业的颠峰时期,她却突然停止了所有数学与科学的研究。她一直照顾她父亲直至1752年她的父亲去逝,接着便负起照顾及教育她的二十位弟妹之责任。之后,她把她的余年都奉献给慈善事业,在1771年成为老人之家的董事。
欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.
德国数学家大卫·希尔伯特(1862~1943)是20世纪最伟大的数学家之一.他对数学的贡献是巨大的和多方面的,研究领域涉及代数不变式,代数数域,几何基础,变分法,积分方程,无穷维空间,物理学和数学基础等.他在1899年出版的《几何基础》成为近代公理化方法的代表作,且由此推动形成了“数学公理化学派”,可以说希尔伯特是近代形式公理学派的创始人.1900年希尔伯特38岁时在巴黎举行的第二届国际数学家大会上作了题为《数学问题》的著名讲演.在讲演中,他根据19世纪数学研究的成果与发展趋势,以卓越的远见和非凡的洞察力,提出了新世纪所面临的23个问题.这23个问题涉及现代数学的大部分重要领域(著名的哥德巴赫猜想就是第8个问题中的一部分),对这些问题的研究有力地推动了20世纪各个数学分支的发展.
本文介绍关于希尔伯特青年时代的两个小故事.
一、老师在课堂上现想现推
1880年秋天,18岁的希尔伯特进人家乡的哥尼斯堡大学,他不顾当法官的父亲希望他学习法律的愿望,毫不犹豫地进了哲学系学习数学(当时的大学,数学还设在哲学系内).希尔伯特发现当时的大学生活要多*有多*.意想不到的*,使许多年轻人把大学第一年的宝贵时光都花费在学生互助会的传统活动饮酒和斗剑上,然而对希尔伯特来说,大学生活的更加迷人之处却在于他终于能*地把全部精力给予数学了.
大学的第一学期,希尔伯特选学了积分学,矩阵论和曲面的曲率论三门课.根据规定。第二学期可以转到另一所大学听课,希尔伯特选择了海德尔堡大学,这是当时德国所有大学中最讨人喜欢和最富浪漫色彩的学校.希尔伯特在海德尔堡大学选听拉撒路·富克斯的课.富克斯是微分匠谭矫娴拿遥拿趾拖咝晕⒎址匠碳负醭闪送逵铮部稳肥涤胫诓煌说挠∠蠛苌睿吻八淮笞鲎急福砸驳哪谌荩诳翁蒙舷窒胂滞疲谑浅37⑸庋那樾危掣鑫侍庠诤诎迳贤撇幌氯チ耍馐彼驮傧肓硗庖恢址椒ǎ惺币涣缓眉钢址椒ǎ詈笞苣芡频汲鼋峁矗褪钦庋肮哂谠诳翁蒙习炎约褐糜谖O盏木车兀庋目窝侨绾慰茨兀克囊晃谎罄椿匾涫毙吹溃赫庋目危寡恰暗玫揭桓龌幔埔磺谱罡叱氖嘉氖导使蹋蔽颐强梢韵胂螅朴谒伎己脱暗南6乜隙ɑ岽又辛煳虻揭桓鍪Ъ沂侨绾嗡伎嘉侍獾模庵职妇霰谥沼谡业浇夥ǖ奶剿鞴淘诮炭剖樯衔蘼廴绾问强床坏降模阉伎嘉侍獾氖导使陶瓜指矗庋鍪导噬鲜欠浅8挥谄舴⑿缘模夜氖Х椒圩倚炖谓淌谌衔庖坏愣韵6氐某沙た隙ㄆ鸸芎玫淖饔茫蚁胝庖坏愣晕颐墙裉煲埠苡衅舴ⅲ笆Р唤鲆Щ嵴獾捞獾慕夥ǎ腋Щ嵴飧鼋夥ㄊ侨绾握业降模囱Щ崴伎迹?/P>
二、苹果树下的例行出步
希尔伯特在海德尔堡上了一学期以后,接下来的一个学期,本来可以允许他再转到柏林去听课,但他深深地依恋自己的家乡,于是他又回到了哥尼斯堡大学.再下一个学期——1882年春天,希尔伯特仍决定留在哥尼斯堡.
这时赫尔曼·阅可夫斯基从柏林学习了三个学期后也回到了哥尼斯堡大学.闽可夫斯基从小就数学才能出众,据说有一次上数学课,老师因把问题理解错了而“挂了黑板”,同学们异口同声叫道:“闭可夫斯基去帮帮忙!”在柏林上学时,他因为出色的数学工作曾得到过一笔奖金.这时,年仅17岁的阅可夫斯基正沉浸在一项很深奥的研究之中——解巴黎科学院出榜征解的一个问题:把一个数表成五个平方数的和.一年后,1883年春天,18岁的阅可夫斯基和英国著名的数学家史密斯共享巴黎科学院的这项大奖.这件事轰动了整个哥尼斯堡.希尔伯特的父亲因此曾告诫自己的儿子不要冒冒失失地去和“这样知名的人”交朋友.但由于对数学的热爱和共同的信念,希尔伯特和比他小两岁的闽可夫斯基很快成了好朋友.
1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25岁,在函数论方面已有出色的研究成果.希尔伯特和闽可夫斯基很快就和他们的新老师建立了密切的关系.他们这三个年轻人每天下午准5点必定相会去苹果树下散步.希尔伯特后来回忆道:“日复一日的散步中,我们全都埋头讨论当前数学的实际问题;相互交换我们对问题新近获得的理解,交流彼此的想法和研究计划.”在他们三人中,赫维茨有着广泛“坚实的基础知识,又经过很好的整理,”所以他是理所当然的带头人,并使其他两位心悦诚服.当时希尔伯特发现,这种学习方法比钻在昏暗的教室或图书馆里啃书本不知要好多少倍,这种例行的散步一直持续了整整八年半之久.以这种最悠然而有趣的学习方式,他们探索了数学的“每一个角落”,考察着数学世界的每一个王国,希尔伯特后来回忆道:“那时从没有想到我们竟会把自己带到那么远!”三个人就这样“结成了终身的友谊.”
正如徐利治教授所指出的,良师益友间的互相切磋讨论对希尔伯特的成长发展也起了十分重要的作用,可以想见那段时间是希尔伯特才、学、识获得迅速成长的重要阶段,假如没有这段经历,那么希尔伯特在1900年竟能在许多重要领域中一次提出那么多著名难题,倒是不易想象的了. 有关希尔伯特散步的这个小故事告诉我们,师生除了在课堂上的活动以外,师生在课外的交流以及同学间的课外交流,也是一种重要的学习方式,对数学学习非常有益。而且,在散步中交流因为没有书本,也不用纸和笔,因此没有繁琐的推导和计算,只能交谈那些能用话“说出来”的东西,即对问题的理解,分析总是中的思想和方法,挖掘统帅形式推导的灵魂,......而这些对学好数学非常重要。同学们不妨经常邀几位要好的同学一起散步交谈,肯定会其乐无究的。
(王敬庚)
他是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他的大学读到几乎毕不了业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是—— 数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上"共轭矩阵"是他先提出来的,人类一千多年来解不出"五次方程式的通解",是他先解出来的。自然对数的"超越数性质",全世界,他是第一个证明出来的人。他的一生证明"一个不会考试的人,仍然能有胜出的人?quot;,并且更奇妙的是不会考试成为他一生的祝福。怎么会这样呢?嗯……也许能在本文中找到答案喔!翻开欧洲的地图,在法国的东北角嵌着一块小小的版图,名叫洛林Lorraine)。
这个地方自古以来就是兵家必争之地,因为北扼莱茵河口,南由马恩河(Marne River)可以直捣巴黎;濒临的阿登高地(Ardennes)是军事制高点;地层中蕴藏欧洲最大的铁矿。早在神圣罗马帝国时代,洛林草场上就染满骑士的鲜血;1871年德国的铁血雄兵蹂躏法国后,要求法国割让的土地就是洛林。
革命家的血统
经过百年来战争的洗礼,洛林留下来的是一批苦干、达观的法国人,足能面 对环境的苦难。埃尔米特(Charles Hermite)1822年12月24日出生在洛林的小村 庄Dieuge,他的父祖辈都参与了法国大革命,祖父被大革命后的极端政治团 体巴黎公社(Commune)逮捕,后来死于狱中;有些亲人死在断头台上;他的父亲是杰出的冶矿工程师,因为被公社通缉,逃到法国边界的洛林小村庄,在一家铁矿场中隐姓埋名做矿工。
铁矿场的主人叫雷利曼(Lallemand),一个标准强悍的洛林人,有一个比他更强悍的女儿玛德琳(Madeleine)。在那个保守的时代,玛德琳就以"敢在户外 穿长裤不穿裙子"而著名,凶悍地管理矿工。但是一遇到这位巴黎来的工程师,她就软化了,明知对方是死刑通缉犯还是嫁给他,而且为他生了七个孩子。埃尔米特在七个孩子中排名第五,生下来右脚就残障,需扶拐杖行走。他身上一半流着父亲优秀聪明、理想奋斗的血液,一半流着母亲敢作敢为、敢爱敢恨的洛林强悍血统,谱成不凡生涯的第一个升记号。
从大师认识数学之美
埃尔米特从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试;后来写道:"学问像大海,考试像鱼钩,老师老要把鱼挂 在鱼钩上,教鱼怎么能在大海中学会*、平衡的游泳?" 老师看他考不好,就用木条打他的脚,他恨死了;后来写道?quot;达到教育的 目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?" 他的数学考得特别差,主要原因是他的数学特别好;他讲的话更让数学老师 抓狂,他说:"数学课本是一滩臭水,是一堆垃圾。数学成绩好的人,都是 一些二流头脑的人,因为他们只懂搬垃圾。"他自命为一流的科学狂人。不 过他讲的也没错,历史上最伟大的数学家大多是文学、外交、工程、军事等, 与数学不相干科系出身的。 埃尔米特花许多时间去看数学大师,如牛顿、高斯的原著,他认为在那里才 能找到"数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。" 他在年老时,回顾少年时的轻狂,写道:"传统的数学教育,要学生按部就 班地,一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重 启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方 程序里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上 的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。"
孝顺的天才
埃尔米特的表现让父母忧心,父母但求他能把书念好,再多的钱也愿意付出,就把他送到巴黎的「路易大帝中学」(Louis-le-Grand)。因着超卓的数学天份, 他无法把自己塞入数学教育的窠臼,但是为了顺父母的意,又必须每天面对 那些细微繁琐的计算,以致痛苦得不得了。这位孝顺的天才,似乎注定终生 的自我折磨。 巴黎综合工科技术学院(Polytechnique)入学考每年举行两次,他从十八岁开始 参加,考到第五次才以吊车尾的成绩通过。其间他几乎要放弃时,遇到一位 数学老师李察(Richard)。李察老师对埃尔米特说:"我相信你是自拉格朗日 (Lagrange)以来的第二位数学天才。"拉格朗日被称为数学界的贝多芬,他所作的求根近似解被誉为「数学之诗」。 但是埃尔米特光有天份不够,李察老师说:"你需要有上帝的恩典,与完成 学业的坚持才不会被你认为垃圾的传统教育牺牲掉。"因此他一次又一次 地落榜,却仍继续坚持应试。

小时候刻苦学习,然而,华罗庚却被叫去看店(卖棉花的铺子).为了一个国际上享有盛誉的我国数有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了...