函数f〔x〕在点 xo 处可导求Limf〔xo +αh〕-f〔xo –βh〕/h的极限

问题描述:

函数f〔x〕在点 xo 处可导求Limf〔xo +αh〕-f〔xo –βh〕/h的极限

f'(x0) = lim(h->0)[ f(x0+h)- f(x0)] /h
lim(h->0)f(x0+αh) - f(x0-βh) /h
= α lim(h->0)f(x0+αh) - f(x0) /( αh) + lim(h->0) [ f(x0) - f(x0-βh) ]/h
= α f'(x0) + β {lim(h->0) [ f(x0) - f(x0-βh) ]/(βh)}
=(α+β)f'(x0)

Lim [f(xo+αh) - f(xo-βh)] / h
=(α+β)* Lim [f(xo+αh) - f(xo-βh)] / [(αh)-(-βh)]
=(α+β) * f'(xo)