反三角函数公式证明问题证明arcsinx+arcsiny = arcsin(x根号下(1-y^2)+y根号下(1-x^2)) 当xy≤0或x^2+y^2≤1
问题描述:
反三角函数公式证明问题
证明arcsinx+arcsiny = arcsin(x根号下(1-y^2)+y根号下(1-x^2)) 当xy≤0或x^2+y^2≤1
答
反三角函数公式证明问题
证明arcsinx+arcsiny = arcsin(x根号下(1-y^2)+y根号下(1-x^2)) 当xy≤0或x^2+y^2≤1