lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.

问题描述:

lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.

lim e^{n[ln√(n²+1)-ln(n+1)]}
=lim e^{[ln√(n²+1)-ln(n+1)]/(1/n)}应用洛必达法则
=lim e^[-(n-1)n²/(n+1)(n²+1)]
=1/e
希望对你有帮助,望采纳,谢谢~