已知函数Y=f(x)对任意的x,y∈R,均有f(x)+f(x)=f(x+y),且当x>0时f(x )<0,证明fx在R上是递减
问题描述:
已知函数Y=f(x)对任意的x,y∈R,均有f(x)+f(x)=f(x+y),且当x>0时f(x )<0,证明fx在R上是递减
答
证:由f(x)+f(y)=f(x+y)得f(x+y)-f(y)=f(x)任取x1<x2则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)因为x1<x2,所以x2-x1>0又且当x>0时f(x )<0故f(x2-x1)<0所以f(x2)-f(x1)<0即f(x2)<f(x1)所以f(x)在R上...