{解方程}x^2+xy+y^2=7 y^2-5xy+6y^2=1
问题描述:
{解方程}x^2+xy+y^2=7 y^2-5xy+6y^2=1
x^2+xy+y^2=7
y^2-5xy+6y^2=1
答
我猜想题打错了吧!当然现在更好解.我就不解了.
我估计题目是
x^2+xy+y^2=7 x^2-5xy+6y^2=1x^2+xy+y^2=7x^2-5xy+6y^2=1 对,怎么解{{x -> -Sqrt[1/91 (403 - 11 Sqrt[78])], y -> (Sqrt[91] (403 - 11 Sqrt[78])^(3/2) - 601 Sqrt[91 (403 - 11 Sqrt[78])])/41041}, {x -> Sqrt[ 1/91 (403 - 11 Sqrt[78])], y -> (-Sqrt[91] (403 - 11 Sqrt[78])^(3/2) + 601 Sqrt[91 (403 - 11 Sqrt[78])])/ 41041}, {x -> -Sqrt[1/91 (403 + 11 Sqrt[78])], y -> (Sqrt[91] (403 + 11 Sqrt[78])^(3/2) - 601 Sqrt[91 (403 + 11 Sqrt[78])])/41041}, {x -> Sqrt[ 1/91 (403 + 11 Sqrt[78])], y -> (-Sqrt[91] (403 + 11 Sqrt[78])^(3/2) + 601 Sqrt[91 (403 + 11 Sqrt[78])])/41041}}