已知常数a>0,n为正整数,fn(X)=x^n-(x-a)^n对任意n≥a,证明fn+1`(n+1)>(n+1)fn`(n)

问题描述:

已知常数a>0,n为正整数,fn(X)=x^n-(x-a)^n对任意n≥a,证明fn+1`(n+1)>(n+1)fn`(n)

原函数fn(x)=x^n-(x-a)^n,求导得fn'(x)=n[x^(n-1)-(x-a)^(n-1)]=nfn-1(x)则fn+1'(x)=(n+1)fn(x)所以fn+1'(n+1)=(n+1)fn(n+1)因为f1(x)=a>0,且n为正整数,所以fn'(x)>0,即fn(x)是单调增函数所以fn(n+1)>fn(n)故,fn+...