如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥DA,CD=2AB,PA⊥底面ABCD,E、F分别为PC,PD的中点,PA=AD=AB. (1)证明:EF∥平面PAB; (2)证明:平面BEF⊥平面PDC; (3)求BC与平面
问题描述:
如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥DA,CD=2AB,PA⊥底面ABCD,E、F分别为PC,PD的中点,PA=AD=AB.
(1)证明:EF∥平面PAB;
(2)证明:平面BEF⊥平面PDC;
(3)求BC与平面PDC所成的角.
答
证明:(1)如图:因为E,F分别是∴EF∥CD,又∵CD∥AB,∴EF∥AB,EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB;(2)连结AF,∵EF∥.12DC,AB∥.12DC,∴EF∥.AB,所以四边形ABSF为平行四边形,∴BS∥AF,∵PA=AD,F...