已知四棱锥S-ABCD 底面为边长为2倍根号的正方形 所有棱长均为4 ,且顶点在底面的射影为底面的中心

问题描述:

已知四棱锥S-ABCD 底面为边长为2倍根号的正方形 所有棱长均为4 ,且顶点在底面的射影为底面的中心
求侧面积表面积和体积

做顶点到四棱锥底部的垂线SO,因为底面边长=2√2,则OA=2,又因为SA=4,所以SO=2√2,所以V体积=2√2×2√2×2√2×1/3=8√2,求出侧面高为√14,所以S侧=2√2×√14×1/2×4=8√7
S表=8√7加上2√2×2√2=64√7