求积分 ((x^2)*arctan(x)/sqrt(1-x^2),0,1)
问题描述:
求积分 ((x^2)*arctan(x)/sqrt(1-x^2),0,1)
答
基本积分公式有一条是这样的:
积分:1/(1+x^2)dx=arctanx+C
然后推广之后就有:
积分:1/(a^2+x^2)dx=1/a*arctan(x/a)+C
对于这道题:
积分:1/(10+3x^2)dx
=积分:1/[(sqrt(10))^2+(根号(3)*x)^2]dx
=1/根号(3)*积分:1/[(sqrt(10))^2+(根号(3)*x)^2)]d(根号(3)x)
=1/根号(3)*1/根号(10)*arctan(x/根号(3))+C
=根号(30)/30*arctan(根号(3)x/3)+C
(C是常数)