高一数学sinA)^4/(cosB)^2+cosA^4/sinB^2=1

问题描述:

高一数学sinA)^4/(cosB)^2+cosA^4/sinB^2=1
(sinA)^4/(cosB)^2+(cosA)^4/(sinB)^2=1,求证
(sinB)^4/(cosA)^2+(cosB)^4/(sinA)^2=1

证明:(cosA)^2=1-(sinA)^2,(cosB)^2=1-(sinB)^2.将上面两式代入条件式,并去分母得:(sinA)^4(sinB)^2+[1-(sinA)^2]^2[1-(sinB)^2]=(sinB)^2(cosB)^2.化简配平方得:[(sinA)^2+(sinB)^2-1]^2=0,有(sinA)^2+(sinB)^2=...