用展开泰勒公式证明不等式

问题描述:

用展开泰勒公式证明不等式
设f(x)在[0,1]具有三阶连续导数,且f(0)=1,f(1)=2,f'(1/2)=0.证,在(0,1)内存在ξ1,ξ2使得f'''(ξ1)

数学人气:878 ℃时间:2020-08-16 02:00:43
优质解答
f(0)=f(1/2)+f'(1/2)(-1/2)+f''(1/2)(-1/2)^2/2!+f'''(a)(-1/2)^3/3!(1)f(1)=f(1/2)+f'(1/2)(1/2)+f''(1/2)(1/2)^2/2!+f'''(b)(1/2)^3/3!(2)(1)-(2)得:-1=-f'''(a)/48-f'''(b)/48f'''(a)+f'''(b)=48,故在(0,1)内存...
我来回答
类似推荐

f(0)=f(1/2)+f'(1/2)(-1/2)+f''(1/2)(-1/2)^2/2!+f'''(a)(-1/2)^3/3!(1)f(1)=f(1/2)+f'(1/2)(1/2)+f''(1/2)(1/2)^2/2!+f'''(b)(1/2)^3/3!(2)(1)-(2)得:-1=-f'''(a)/48-f'''(b)/48f'''(a)+f'''(b)=48,故在(0,1)内存...