设函数f(x)=sin(wx+派/3)+sin(wx)(w>0)w为欧密个,相邻两条对称轴间的距离为2,求f(1),若f(x+m)是偶函数,求正数m的最小值

问题描述:

设函数f(x)=sin(wx+派/3)+sin(wx)(w>0)w为欧密个,相邻两条对称轴间的距离为2,求f(1),若f(x+m)是偶函数,求正数m的最小值

f(x)=sin(wx+π/3)+sin(wx)=(3/2)sinwx+(√3/2)coswx=√3sin(wx+π/6),相邻两条对称轴间的距离为2,∴π/w=2,w=π/2.f(1)=3/2.f(x+m)是偶函数,f(x+m)=f(-x+m),sin[(π/2)(x+m+1/3)]-sin[(π/2)(-x+m+1/3)]=0,cos[...