已知f(x)=2x^3+3ax^2+3bx+8c在x=1与x=2取到极值

问题描述:

已知f(x)=2x^3+3ax^2+3bx+8c在x=1与x=2取到极值
1)求a.b 的值(2)对任意x属于闭区间0到3均有f(x)

f(x)=2x^3+3ax^2+3bx+8c,求导,得到f(x)'=6x^2+6ax+3b,又,在x=1与x=2取到极值,故f(x)'=k(x-1)(x-2)=6x^2+6ax+3b,得到 kx^2-3kx+2k=6x^2+6ax+3b,比较系数,得:k=6,-3k=6a,2k=3b故,a=-3,b=4.所以f(x)=2x^3-9x^2+12x+8c...