已知abc为互补相等的实数,求证:a^4+b^4+c^4>abc(a+b+c)

问题描述:

已知abc为互补相等的实数,求证:a^4+b^4+c^4>abc(a+b+c)

设x=a^2,y=b^2,z=c^2
a^4+b^4+c^4
=x^2+y^2+z^2
=1/2((x^2+y^2)+(x^2+z^2)+(y^2+z^2))
>=xy+xz+yz(x^2,y^2,z^2均大于等于零)
=a^2b^2+b^2c^2+c^2a^2
=1/2((a^2b^2+b^2c^2)+(b^2c^2+c^2a^2)+(a^2b^2+c^2a^2))
>=b^2ac+c^2ab+a^2bc(a^2b^2,b^2c^2,a^2c^2均大于等于0)
=abc(a+b+c)
∵取等号的条件为a=b=c,又abc互不相等
所以
a^4+b^4+c^4>abc(a+b+c)