对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1.如此进行直到为l时操作停止.问:经过9次操作变为1的数有多少个?
问题描述:
对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1.如此进行直到为l时操作停止.问:经过9次操作变为1的数有多少个?
答
知识点:题考查了数的奇偶性变化规律.关键是根据题意,由易到难寻找数的变化规律.
通过1次操作变为1的数有1个,即2;经过2次操作变为1的数有2个,即4、1;经过3次操作变为1的数有2个,即3、8;…;经过6次操作变为1的数有8个,即11、24、10、28、13、64、31、30;经过1、2、3、4、5…次操作变为1的...
答案解析:本题可以通过所给的变换规律,由易到难,确定操作可变为1的数组成斐波拉契数列,再根据所发现的规律求出经过9次操作变为l的数的个数.
考试点:通过操作实验探索规律.
知识点:题考查了数的奇偶性变化规律.关键是根据题意,由易到难寻找数的变化规律.