函数f(x)在[0,1]上连续 在(0,1)内可导 且f(0)=0 证明 存在a 使得af'(a)+2f(a)=f'(a)
问题描述:
函数f(x)在[0,1]上连续 在(0,1)内可导 且f(0)=0 证明 存在a 使得af'(a)+2f(a)=f'(a)
求步骤
答
考虑函数F(x)=(x-1)^2*f(x),在[0,1]上满足罗尔定理条件,故存在一点a ,使得F'(a)=0
就得2(a-1)f(a)+(a-1)^2*f'(a)=0,化简得结论等式.