对任何自然数,x^n-nx+(n-1)能被(x-1)^2整除,用数学归纳法证明这个命题
问题描述:
对任何自然数,x^n-nx+(n-1)能被(x-1)^2整除,用数学归纳法证明这个命题
答
证明:当n=1时,原式=0能被(x-1)^2整除
假设当n=k时,原式能被(x-1)^2整除
当n=k+1时,原式=x^(k+1)-(k+1)x+(k+1-1)=x^(k+1)-kx-x+k=x[x^k-kx+(k-1)]+k(x-1)^2,
因为x^k-kx+(k-1)与k(x-1)^2都能被(x-1)^2整除,所以原式也能被(x-1)^2整除
证毕。
答
1
答
记f(n)=x^n -nx + n-1,
n=1时,f(1)=x-x=0显然能被(x-1)^2整除.
设n=k时,f(k)能被(x-1)^2整除,则当n=k+1时
f(k+1)-f(k)=x^(k+1) - x^k -x +1 = x^k(x-1) -(x-1) = (x-1)(x^k-1)=(x-1)^2 * [1+x+...+x^(k-1)]
所以f(k+1)-f(k)能被(x-1)^2整除,再由归纳假设有f(k)能被(x-1)^2整除,所以f(k+1)能被(x-1)^2整除.
所以对任意自然数n,f(n)=x^n -nx + n-1能被(x-1)^2整除.