如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分
问题描述:
如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有( )
A. S1<S2
B. S1>S2
C. S1=S2
D. S1,S2的大小关系不能确定
答
连OA、OB、OC、OD,OE,OF,则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD+VO-AFDVA-EFC=VO-AFC+VO-AEC+VO-EFC又VA-BEFD=VA-EFC而每个三棱锥的高都是原四面体的内切球的半径,又面AEF公共,故SABD+SABE+SBEFD+SADF=SAFC+SAEC+SEF...