在数列{An}中,已知An=(n+1)*(10/11)^n是否存在正整数k,使{An}中,对任意的正整数n,都有Ak>=An成立?

问题描述:

在数列{An}中,已知An=(n+1)*(10/11)^n是否存在正整数k,使{An}中,对任意的正整数n,都有Ak>=An成立?

:∵an + 1 – an = (n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n = ( 10/11 )^n*(9-n/11)
∴当n<9时,a n + 1 - an>0即a n + 1 >a n ;
当n=9时a n + 1-a n=0,即a n + 1=an ,
当n>9时,a n + 1- an<0即a n + 1<a n ,
故a1<a2<……<a9 = a10>a11>a12>……,
∴数列{an}中最大项为a9或a10 ,
其值为10•( 10/11)9,
其项数为9或10