已知函数f(x)=sin(ωx-π/6)sin(ωx+π/3),相邻两条对称轴之间的距离为π/2,

问题描述:

已知函数f(x)=sin(ωx-π/6)sin(ωx+π/3),相邻两条对称轴之间的距离为π/2,
在△ABC中,abc为角ABC的对边,若A<B且f(A)=f(B)=1/4,求c/a的值

(wx+π/3)-(wx-π/6)=π/2 ==>(wx+π/3)=π/2+(wx-π/6) 两边取正弦得:sin(wx+π/3)=sin[π/2+(wx-π/6)]=cos(wx-π/6)f(x)=1/2sin(2wx-π/3)因为相邻两条对称轴之间的距离为π/2即:T/2=π/2 ==>T=π=2π/2w ==>w=...