四边形,五边形,六边形,七边形...多(N)边形的所有外角之和是多少?

问题描述:

四边形,五边形,六边形,七边形...多(N)边形的所有外角之和是多少?
注:

多边形的所有外角之和都是360度.
假设是n边形,内角和是(n-2)180度.
每个一外角都等于180度减相邻的内角,所以所有的外角之和是:
n*180度-(n-2)180度=n*180度-n*180度+360度=360度.