【就一部不懂】如果x、y∈R,且x≠y,比较(x2+y2)2与xy(x+y)2大小

问题描述:

【就一部不懂】如果x、y∈R,且x≠y,比较(x2+y2)2与xy(x+y)2大小
作差法
(x2+y2)2-xy(x+y)2
=x^4+y^4+2x^2y^2-x^3y-2x^2y^2-xy^3
=(x-y)(x^3-y^3)
=(x-y)^2[(x+y/2)^2+3y^2/4]
∵x≠y
(x-y)^2>0,(x+y/2)^2+3y^2/4>0
∴(x2+y2)2>xy(x+y)2
=(x-y)^2[(x+y/2)^2+3y^2/4] 这部是怎么做出来的?

因为
a^3-b^3=(a-b)(a^2+ab+b^2)= (a-b)[a^2+ab+b^2/4+b^2(3/4)]
=(a-b)[(a+b/2)^2+3b^2/4]