设常数a≠1/2,则limn→∞ln[n−2na+1n(1−2a)]n=_.

问题描述:

设常数a≠

1
2
,则
lim
n→∞
ln[
n−2na+1
n(1−2a)
]n
=______.

∵[n−2na+1n(1−2a)]n=[1+1n(1−2a)]n(1−2a)•11−2a∴limn→∞ln[n(1−2a)+1n(1−2a)]n=limn→∞ln[1+1n(1−2a)]n(1−2a)•11−2a=lnlimn→∞[1+1n(1−2a)]n(1−2a)•11−2a=lne11−2a=11−2a...