设常数a≠1/2,则limn→∞ln[n−2na+1n(1−2a)]n=_.
问题描述:
设常数a≠
,则1 2
ln[lim n→∞
]n=______. n−2na+1 n(1−2a)
答
∵[n−2na+1n(1−2a)]n=[1+1n(1−2a)]n(1−2a)•11−2a∴limn→∞ln[n(1−2a)+1n(1−2a)]n=limn→∞ln[1+1n(1−2a)]n(1−2a)•11−2a=lnlimn→∞[1+1n(1−2a)]n(1−2a)•11−2a=lne11−2a=11−2a...