1.设A(-1,4,2),B(3,5,1),C(1,0,0),若空间中有一点P,使[PA]^2+[PB]^2+[PC]^2之值最小,则其最小值是?此时P点的坐标是?

问题描述:

1.设A(-1,4,2),B(3,5,1),C(1,0,0),若空间中有一点P,使[PA]^2+[PB]^2+[PC]^2之值最小,则其最小值是?此时P点的坐标是?
2.已知A(1,2,-1),B(2,0,2),在xOz平面内的点M到A和B等距离,M点的轨迹方程为?

1.易证可得,取最小值时,P点在平面ABC内.设P坐标(x,y,z)[PA]^2+[PB]^2+[PC]^2=(x+1)^2+(y-4)^2+(z-2)^2+(x-3)^2+(y-5)^2+(z-1)^2+(x-1)^2+(y)^2+(z)^2 (合并之后)=3(x-1)^2+3(y-3)^2+3(z-1)^2+24所以最小是24P坐...