已知函数f(x)=(4cos^4x-2cos2x-1)/[sin(π/4+x)·sin(π/4-x)]
问题描述:
已知函数f(x)=(4cos^4x-2cos2x-1)/[sin(π/4+x)·sin(π/4-x)]
(1)求f(-11/12π)的值
(2)当x∈[0,π/4)时,求g(x)=1/2f(x)+sin2x的最大和最小值
答
f(x)=(4cos^4x-2cos2x-1)/[sin(π/4+x)·sin(π/4-x)]=[(1+cos2x)*2-2cos2x-1]/[(-1/2)(cosπ/2-cos2x)]=2(cos2x)^2/cos2x=2cos2x1)f((-11/12)π)=2cos(-11π/6)=2cos(11π/6)=2cos(2π-π/6)=2cos(π/6)=根号32...