3^2/a^2 + (-2√6)^2/a^2-4=1

问题描述:

3^2/a^2 + (-2√6)^2/a^2-4=1
3^2/a^2 + (-2√6)^2/a^2-4=1

答;
3^2/a^2 + (-2√6)^2/a^2-4=1
9/a^2+24/(a^2-4)=1
9(a^2-4)+24a^2=a^4-4a^2
33a^2-36=a^4-4a^2
a^4-37a^2+36=0
(a^2-1)(a^2-36)=0
a^2=1或者a^2=36
经检验,a^2=1或者a^2=36是原分式方程的解
所以:a=-1或者a=1或者a=-6或者a=6