分别求满足下列等式的复数z(1)iz(z上面有一横)+2z=3i;(2)2z+|z|(z上面有一横)=-1+8i.
问题描述:
分别求满足下列等式的复数z(1)iz(z上面有一横)+2z=3i;(2)2z+|z|(z上面有一横)=-1+8i.
答
设复数z=a+bi,则其共轭复数z'=a-bi(1),iz'+2z=3i即i*(a-bi)+2(a+bi)=3i化简得2a+b+(a+2b-3)i=0可知2a+b=0,且a+2b-3=0解得a=-1,b=2所以z=-1+2i(2),2z+|z'|=-1+8i即2(a+bi)+|a-bi|=-1+8i即2a+根号【a^2+b^2】+2bi=...