已知函数y=f(x)对于任意x∈R,都有f(x)=-f(x-4),若f(0)=3,tanα=2,则f(2010sinαcosα)的值为

问题描述:

已知函数y=f(x)对于任意x∈R,都有f(x)=-f(x-4),若f(0)=3,tanα=2,则f(2010sinαcosα)的值为

f(x)=-f(x-4)=f(x-8),周期为8.
tanα=2,sinαcosα=sinαcosα/[(sinα)^2+(cosα)^2]=tanα/[(tanα)^2+1]=2/5
f(2010sinαcosα)=f(804)=f(100*8+4)=f(4)=-f(0)=-3