已知cos(a+π)=根号10/10,a∈(0,π/2),则sin(2a-π/4)的值为
问题描述:
已知cos(a+π)=根号10/10,a∈(0,π/2),则sin(2a-π/4)的值为
题目是cos(a+π/4)=根号10/10 不好意思,亲们
答
∵cos(a+π)=-cosa=-根号10/10∴cosa=√10/10∵a∈(0,π/2)∴sina=√(1-cos²a)=3√10/10∴sin2a=2sinacosa=2*3√10/10*√10/10=3/5cos2a=2cos²a-1=2*1/10-1=-4/5∴sin(2a-π/4)=sin2acosπ/4-cos2asinπ/4...如果cos(a+π/4)=根号10/10呢?∵cos(a+π/4)=√10/10>0∴cos[2(a+π/4)]=2cos²(a+π/4)-1=2*1/10-1=-4/5又cos[2(a+π/4)]=cos(2a+π/2)=-sin2a∴sin2a=4/5∵cos(a+π/4)=√10/10>0 a∈(0,π/2)∴00 a+π/4是锐角, ∴0