已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴正半轴上运动,顶点D在y轴上运动

问题描述:

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴正半轴上运动,顶点D在y轴上运动
(点A,D都不与原点重合),B,C都在第一象限,对角线AC,BD交于点P,连接OP
问:当OA

证明:从P作PM垂直X轴于M,作PN垂直Y轴于N
PM⊥X轴,PN⊥Y轴,所以PM⊥PN,∠MPN=90
P为正方形对角线交点,所以∠DPA=∠MPN=90,且AP=DP
∠MPA=∠DPA-∠DPM
∠NPD=∠MPN-∠DPM
因此∠MPA=∠NPD
在△MPA和△NPD中
∠MPA=∠NPD
∠AMP=∠DNP=90
AP=DP
所以△MPA≌△NPD.PM=PN
四边形OMPN中∠MON=∠PMO=∠PNO=90,因此为矩形
且PM=PN,矩形一组邻边相等,因此为正方形
OP为正方形OMPN对角线,因此∠DOP=45
因为∠DOA=90,所以OP平分∠DOA