已知椭圆x^2/4+y^2=1,P为椭圆上一动点,A点的坐标为(1,1/2)则线段PA中点M轨迹方程
问题描述:
已知椭圆x^2/4+y^2=1,P为椭圆上一动点,A点的坐标为(1,1/2)则线段PA中点M轨迹方程
答
设M(x,y),P(x',y'),则(1+x')/2=x,(1/2+y')/2=y,所以x'=2x-1,y'=2y-1/2把它们代入椭圆方程得 [(2x-1)^2]/4+(2y-1/2)^2=1,还是椭圆只不过中心在(1/2,1/4),不在原点了.