a,b,c∈(0,+∞,a+b+c=3,求证:a/(3-a)+b/(3-b)+c/(3-c)≥3/2

问题描述:

a,b,c∈(0,+∞,a+b+c=3,求证:a/(3-a)+b/(3-b)+c/(3-c)≥3/2
=3[1/(3-a)+1/(3-b)+1/(3-c)]-3
(利用柯西不等式)
≥3×[(1+1+1)^2/(3-a+3-b+3-c)]-3
这步是怎么出来的?

证明:∵a,b,c∈(0,+∞)∴a/(3-a)+b/(3-b)+c/(3-c)={[a/(3-a)+1]+[b/(3-b)+1]+[c/(3-c)+1]}-3=[3/(3-a)+3/(3-b)+3/(3-c)]-3=3[1/(3-a)+1/(3-b)+1/(3-c)]-3(利用柯西不等式)≥3×[(1+1+1)^2/(3-a+3-b+3...