如果XY/X+Y =1,YZ/Y+Z =2,ZX/Z+X =3,求X+Y+Z的值
问题描述:
如果XY/X+Y =1,YZ/Y+Z =2,ZX/Z+X =3,求X+Y+Z的值
答
显然是XY/(X+Y) =1,YZ/(Y+Z) =2,ZX/(Z+X) =3,求X+Y+Z的值 啊.
由式子1得X+Y=XY即XY-X=Y,X(Y-1)=Y,X=Y/(Y-1)
将X=Y/(Y-1)代入式子3并左右两边同时乘以(Y-1)得3Z(Y-1)+3Y=YZ
化简得2YZ+3Y-3Z=0 由式子2可知2Y+2Z=YZ
代入得到Z=-7Y,代入2YZ+3Y-3Z=0中,有Y(-14Y+24)=0
由于Y显然不为0(Y=0则第二个式子永远不成立)
两边约掉Y得24=14Y 即Y=12/7,代入X=Y/(Y-1),Z=-7Y中解出X=12/5=2.4,Z=-12
所以X+Y+Z=2.4+12/7-12约=-7.9