在坐标平面上,横纵坐标都是整数的点称为整点,而顶点均为整点的多边形称为整点多边形,求证:整点凸五边形必可以找到一个四边形至少覆盖5个整点.

问题描述:

在坐标平面上,横纵坐标都是整数的点称为整点,而顶点均为整点的多边形称为整点多边形,求证:整点凸五边形必可以找到一个四边形至少覆盖5个整点.

设整点凸五边形为ABCDE,而整点坐标的奇偶性共有四类:(奇,奇)、(奇,偶)、(偶,奇)、(偶,偶),故五个顶点中必须有两个点属于同一类,不妨设这两点为M、N,则线段MN的中点Z也是整点.由于五边形五个顶点中...