△ABC中,已知sinB(tanA+tanC)=tanAtanC求证a,b,c成等比
问题描述:
△ABC中,已知sinB(tanA+tanC)=tanAtanC求证a,b,c成等比
答
证明:已知sinB(tanA+tanC)=tanAtanC,那么:
sinB(sinA/cosA + sinC/cosC)=(sinAsinC)/(cosAcosC)
即sinB(sinAcosC+cosAsinC)/(cosAcosC)=(sinAsinC)/(cosAcosC)
所以:sinBsin(A+C)=sinAsinC
又sin(A+C)=sin(180°-B)=sinB,那么:
sin²B=sinAsinC
由正弦定理:a/sinA=b/sinB=c/sinC可得:
b²=a*c
所以边a,b,c成等比数列。
答
证明:已知sinB(tanA+tanC)=tanAtanC,那么:sinB(sinA/cosA + sinC/cosC)=(sinAsinC)/(cosAcosC)即sinB(sinAcosC+cosAsinC)/(cosAcosC)=(sinAsinC)/(cosAcosC)所以:sinBsin(A+C)=sinAsinC又sin(A+C)=sin(180°-B)=s...