某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连
问题描述:
某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是 (填序号即可) ①AF=AG= 1 2 AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME. (2)数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请给出证明过程; (3)类比探究:(i)在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答: . (ii)在三边互不相等的△ABC中(见备用图),仍分别以AB和AC为斜边,向△ABC的内侧作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中点,连接MD和ME,要使(2)中的结论此时仍然成立,j认为需增加一个什么样的条件?(限用题中字母表示)并说明理由.
答
●操作发现:①②③④●数学思考:答:MD=ME,MD⊥ME,1、MD=ME;如图2,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,∵M是BC的中点,∴MF∥AC,MF= AC.又∵EG是等腰Rt△AEC斜边上的中线,∴EG⊥AC且EG= AC,∴MF=EG.同理可证D...