高数,微分.

问题描述:

高数,微分.
sin(x)的n次幂=sin(x+n*π/2)为啥.

sin(x)的1次幂:cos(x)=sin(x+π/2)
sin(x)的2次幂:-sinx=sin(x+2*π/2)
sin(x)的3次幂:-cos(x)=sin(x+3*π/2)
sin(x)的4次幂:sin(x)=sin(x+4*π/2)=sinx
sin(x)的5次幂=sin(x)的1次幂= cos(x)=sin(x+π/2+2π)=sin(x+5*π/2)
……
如此循环下去可得:
sin(x)的n次幂=sin(x+n*π/2)