已知二次函数f(x)=x^2--16x+q+3,(1)若函数在【-1,1】上存在零点,求q的取值范围

问题描述:

已知二次函数f(x)=x^2--16x+q+3,(1)若函数在【-1,1】上存在零点,求q的取值范围
(2)是否存在常数t(t≥0),当t属于【1,10】时,f(x)的值域为区间D,且D的长度为12--t

(1)f(x)=(x-8)^2-61+q,可知在[-1,1]范围内f(x)是单调减函数.f(-1)=20+qf(1)=-12+q分别令f(-1)和f(1)为0,得到q=-20和q=12,这就是q的取值范围.(2)可以设计一个满足要求的函数证明命题成立.比如令f(x)=(12-t)|sinx|,显...