数列{an}中,若a1=1,sn=2s(n-1)+1/2an,求通项an

问题描述:

数列{an}中,若a1=1,sn=2s(n-1)+1/2an,求通项an

sn-s(n-1)=s(n-1)+1/2*an
an=2s(n-1)
a(n+1)=2sn
2(sn-s(n-1))=a(n+1)-an
2an=a(n+1)-an
a(n+1)=3an
an=3a(n-1)
an=3^(n-1)a1
an=3^(n-1)