数列{An},An>0,前n项和为Sn,A1=2 An=2倍根号下(2S(n-1))再加上2 求An的通项

问题描述:

数列{An},An>0,前n项和为Sn,A1=2 An=2倍根号下(2S(n-1))再加上2 求An的通项
数列{An},An>0,前n项和为Sn,A1=2 An=2倍根号下(2S(n-1))再加上2 求An的通项

an=2√2Sn-1+2
(an-2)^2=8Sn-1
[a(n+1)-2]^2=8Sn
8Sn-8Sn-1=8an=[a(n+1)-2]^2-(an-2)^2=[an+a(n+1)-4][a(n+1)-an]
-an^2+a(n+1)^2-4a(n+1)-4an=0
a(n+1)^2-4a(n+1)+4-an^2-4an-4=0
[a(n+1)-2]^2=(an+2)^2
a(n+1)=an+4或a(n+1)=-an(an恒>0,舍去)
an=a(n-1)+4,数列为首项是2,公差是4的等差数列.
an=2+4(n-1)=4n-2
数列{an}的通项公式为an=4n-2