微分算子法的原理是什么

问题描述:

微分算子法的原理是什么

问得好!
不过要好好回答这个问题,就是一篇方法论(methodology)的论文.下面,本人不怕
献丑,以期抛砖引玉.
1、英语中有一个词,homogeneous,汉语有时翻译为“各向同性”,有时翻译成“齐次”,
差强人意.
2、还有一个词,superposition,我们大大咧咧地翻译成“叠加原理”,同样牵强附会.
3、在homogeneous所含有的“各向同性”的意义上,对我们所处的自然界中的很多自然
现象,我们想尽办法,找到了它们可以叠加的特征量qutantity.
譬如:
分子的平均速率,对平均动能的计算并无贡献,必须方均根速率才有叠加的“资格”;
计算辐射强度时,各个辐射源的强度不能叠加,必须考虑Phase difference后才行;
物理学、化学、天文学、水文学、气象学、工程学中的这类例子举不胜举.
4、微积分(Calculus)中的积分(Integration),运用的课题虽然千千万万,但是归根结底,
不外乎两类,superposition就是其中的一类,涉及的是intensive property,另一类
是extensive property.这两类性质,我们都可以笼笼统统地、模模糊糊地、agar-
agar地称为“叠加原理”.
5、微积分中的求导(differentiation,derivative),无论全导数(total differentiation),还
是偏导数(partial differentiation),意义只有一个,就是rate of change with respect to
independent variable.
综合以上考虑,只要物理量(quantity)选取得合适,我们所说的“叠加原理”能够应用时,
微分算符、积分算符就有了生命力.用纯数学的话来说,只要是在线性空间,我们的
微积分算符就有了它的用武之地.
简而言之:
物理现象的叠加,源于特殊的物理量(quantity);
物理量的可叠加,导致数学运算(operation)的叠加;
数学运算的叠加,就产生了具有线性叠加性质(linearity)的算符(operator).
欢迎质疑,欢迎讨论,欢迎批驳.