证明:若g(x)=x2+ax+b,则g(x1+x22)≤g(x1)+g(x2)2.

问题描述:

证明:若g(x)=x2+ax+b,则g(

x1+x2
2
)≤
g(x1)+g(x2)
2

证明:g(

x1+x2
2
)−
g(x1)+g(x2)
2
=(
x1+x2
2
)2+
a
2
(x1+x2)+b
x12+ax1+b+x22+ax2+b
2
=(
x1+x2
2
)2
x12+x22
2
=
x12x22+2x1x2
4
−(x1x2)2
4
≤0

g(
x1+x2
2
)≤
g(x1)+g(x2)
2