证明:若g(x)=x2+ax+b,则g(x1+x22)≤g(x1)+g(x2)2.
问题描述:
证明:若g(x)=x2+ax+b,则g(
)≤
x1+x2
2
. g(x1)+g(x2) 2
答
证明:g(
)−
x1+x2
2
=(g(x1)+g(x2) 2
)2+
x1+x2
2
(x1+x2)+b−a 2
=(
x12+ax1+b+x22+ax2+b 2
)2−
x1+x2
2
=
x12+x22
2
=−x12−x22+2x1x2
4
≤0;−(x1−x2)2
4
∴g(
)≤
x1+x2
2
.g(x1)+g(x2) 2