若{an}为等差数列,且a2+a3+a10+a11=48,则a6+a7等于_.
问题描述:
若{an}为等差数列,且a2+a3+a10+a11=48,则a6+a7等于______.
答
解法1:∵{an}为等差数列,设首项为a1,公差为d,
∴a2+a3+a10+a11=a1+d+a1+2d+a1+9d+a1+10d=4a1+22d=48;
∴2a1+11d=24;
∴a6+a7=a1+5d+a1+6d=2a1+11d=24.
解法2:∵a2+a11=a3+a10=a6+a7,a2+a3+a10+a11=48,
∴a6+a7=24,
故答案为24.