如图,正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M, 求证:(1)∠EBM=∠ECB;(2)BE=AF.
问题描述:
如图,正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,
求证:(1)∠EBM=∠ECB;(2)BE=AF.
答
证明:∵CE⊥BF,垂足为M,
∴∠MBC+∠MCB=∠BEC+∠MCB,
∴∠MBC=∠BEC
又∵AD∥BC,
∴∠MBC=∠AFB
∴∠AFB=∠BEC,
又∵∠BAF=∠EBC,AB=BC,
∴Rt△BAF≌Rt△EBC,
∴(1)∠EBM=∠ECB;(2)BE=AF.